Target Health Blog

About 14% of Cerebral Palsy Cases May Be Tied to Brain Wiring Genes

November 2, 2020

,
Neurology
Source:

According to the CDC, Cerebral palsy (CP) affects approximately one in 323 children in the United States. Signs of the disorder appear early in childhood resulting in a wide range of permanently disabling problems with movement and posture, including spasticity, muscle weakness, and abnormal gait. Nearly 40% of patients need some assistance with walking. In addition, many patients may also suffer epileptic seizures, blindness, hearing and speech problems, scoliosis, and intellectual disabilities.

Since its first official description in 1862, scientists have hotly debated whether CP is caused by problems at birth. For instance, it is known that babies born prematurely or who experience a lack of blood flow or oxygen during birth have a greater chance of suffering from CPr. Later though, it was concluded that a majority (85-90%) of all cases are congenital, and some studies had suggested that CP could also be inherited. Despite this, the causes of many children's cases had remained elusive. Then in 2004, scientists discovered the first genetic mutation known to cause CP. Since then several more mutations have been identified and depending on how an experiment was performed, it has been estimated that anywhere from 2 to 30% of all cases may be linked to a misspelling in a patient's DNA.

In an article published in Nature Genetics (29 September 2020), the authors provided support for a previous estimate and highlighted which genes may play a critical role in the disorder. The study confirmed that about 14% of all cases of CP, may be linked to a patient's genes and suggest that many of those genes control how brain circuits become wired during early development. This conclusion is based on the largest genetic study of CP ever conducted. The results led to recommended changes in the treatment of at least three patients, highlighting the importance of understanding the role genes play in the disorder.

The study searched for what are known as “de novo,“ or spontaneous, mutations in the genes of 250 families from the United States, China, and Australia through a collaboration made possible by the International Cerebral Palsy Genomics Consortium. These rare mutations are thought to happen when cells accidentally make mistakes copying their DNA as they multiply and divide. An advanced technique, called whole exome sequencing, was used to read out and compare the exact codes of each gene inscribed in the chromosomes of the patients with that of their parents. Any new differences represented de novo mutations that either happened while a parent's sperm or egg cell multiplied or after conception. Initially the authors found that the CP patients had higher levels of potentially harmful de novo mutations than their parents. Many of these mutations appeared to be concentrated in genes that are highly sensitive to the slightest changes in the DNA letter code. In fact, they estimated that about 11.9% of the cases could be explained by damaging de novo mutations. This was especially true for the idiopathic cases which had no known cause and represented the majority (62.8%) of cases in the study. Approximately another 2% of the cases appeared to be linked to recessive, or weaker, versions of genes. This raised the estimate of cases that could be linked to genetic problems from 11.9% to 14%, as has been previously reported.

Moreover, the results led to recommendations for more tailored treatments of three patients.

When the authors looked more closely at the results, they found that eight genes had two or more damaging de novo mutations. Four of these genes, labeled RHOB, FBXO31, DHX32, and ALK, were newly implicated in CP while the other four had been identified in previous studies. The authors were especially surprised by the RHOB and FBXO31 results. Two cases in the study had the same spontaneous mutation in RHOB. Likewise, two other cases had the same de novo mutation in FBXO31. According to the authors, “the odds of this randomly happening are incredibly low. This suggests that these genes are highly linked to CP.“ The authors also looked at the genes behind other brain development disorders and found that about 28% of the cerebral palsy genes identified in this study have been linked to intellectual disability, 11% to epilepsy and 6.3% to autism spectrum disorders. In contrast, the authors found no significant overlap between cerebral palsy genes and those involved with the neurodegenerative disorder Alzheimer's disease which attacks the brain later in life.

Further analysis of the results suggested that many of the genes they found in this study, including six of the eight genes that had two or more de novo mutations, control the wiring of neural circuits during early development. Specifically, these genes are known to be involved in either the construction of protein scaffolds that line the perimeters of neural circuits or in the growth and extension of neurons as they wire up.

Experiments on fruit flies, formally known as Drosophila melanogaster, supported this idea. To do this, the authors mutated fly versions of the wiring genes they identified in the cerebral palsy patients. They found that mutations in 71% of these genes caused flies to have problems with movement, including walking, turning, and balancing. The results suggested that these genes play a critical role in movement. They estimated that there was only a 3% chance these problems would happen if they had blindly mutated any gene in the fly genome.

Source: NIH

Contact Target Health

Reach out today and let us know how we can help you!
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form