Target Health Blog

Herd Immunity

October 5, 2020


The top box shows an outbreak in a community in which a few people are infected (shown in red) and the rest are healthy but unimmunized (shown in blue); the illness spreads freely through the population. The middle box shows a population where a small number have been immunized (shown in yellow); those not immunized become infected while those immunized do not. In the bottom box, a large proportion of the population have been immunized; this prevents the illness from spreading significantly, including to unimmunized people. In the first two examples, most healthy unimmunized people become infected, whereas in the bottom example only one fourth of the healthy unimmunized people become infected. Graphic credit: by Tkarcher - Own work, CC BY-SA 4.0,

The primary way to boost levels of immunity in a population is through 1) _____.

Herd immunity (also called herd effect, community immunity, population immunity, or social immunity) is a form of indirect protection from infectious disease that occurs when a sufficient percentage of a population has become immune to an infection, whether through vaccination or previous infections, thereby reducing the likelihood of infection for individuals who lack immunity. Immune individuals are unlikely to contribute to disease transmission, disrupting chains of infection, which stops or slows the spread of disease. The greater the proportion of immune individuals in a community, the smaller the probability that non-immune individuals will come into contact with an infectious individual.

Individuals can become immune by recovering from an earlier infection or through vaccination. Some individuals cannot become immune because of medical conditions, such as an immunodeficiency or immunosuppression, and for this group herd immunity is a crucial method of protection. Once the herd immunity threshold has been reached, disease gradually disappears from a population. This elimination, if achieved worldwide, may result in the permanent reduction in the number of infections to zero, called 2) _____. Herd immunity created via vaccination contributed to the eventual eradication of smallpox in 1977 and has contributed to the reduction of other diseases. Herd immunity applies only to contagious disease, meaning that it is transmitted from one individual to another. Tetanus, for example, is infectious but not contagious, so herd immunity does not apply.

Herd immunity was recognized as a naturally occurring phenomenon in the 1930s when it was observed that after a significant number of children had become immune to measles, the number of new infections temporarily decreased, including among the unvaccinated. Mass vaccination to induce herd immunity has since become common and proved successful in preventing the spread of many infectious diseases. Opposition to vaccination has posed a challenge to herd immunity, allowing preventable diseases to persist in or return to populations with inadequate vaccination rates.

Some individuals either cannot develop immunity after vaccination or for medical reasons cannot be vaccinated. Newborn infants are too young to receive many vaccines, either for safety reasons or because passive immunity renders the vaccine ineffective. Individuals who are immunodeficient due to HIV/AIDS, lymphoma, leukemia, bone marrow cancer, an impaired spleen, chemotherapy, or radiotherapy may have lost any immunity that they previously had and vaccines may not be of any use for them because of their immunodeficiency.

A portion of those vaccinated may not develop long-term immunity. Vaccine contraindications may prevent certain individuals from being vaccinated. In addition to not being immune, individuals in one of these groups may be at a greater risk of developing complications from infection because of their medical status, but they may still be protected if a large enough percentage of the population is immune.

High levels of immunity in one age group can create 3) _____ immunity for other age groups. Vaccinating adults against pertussis reduces pertussis incidence in infants too young to be vaccinated, who are at the greatest risk of complications from the disease. This is especially important for close family members, who account for most of the transmissions to young infants. In the same manner, children receiving vaccines against pneumococcus reduces pneumococcal disease incidence among younger, unvaccinated siblings. Vaccinating children against pneumococcus and rotavirus has had the effect of reducing pneumococcus- and rotavirus-attributable hospitalizations for older children and adults, who do not normally receive these vaccines. Influenza (flu) is more severe in the elderly than in younger age groups, but influenza vaccines lack effectiveness in this demographic due to a waning of the immune system with age. The prioritization of school-age children for seasonal flu immunization, which is more effective than vaccinating the elderly, however, has been shown to create a certain degree of protection for the elderly.

Evolutionary pressure: Herd immunity itself acts as an evolutionary pressure on certain viruses, influencing viral evolution by encouraging the production of novel strains, in this case referred to as escape mutants, that are able to “escape“ from herd immunity and spread more easily. At the molecular level, viruses escape from herd immunity through antigenic drift, which is when mutations accumulate in the portion of the viral genome that encodes for the virus's surface antigen, typically a protein of the virus capsid, producing a change in the viral epitope. Alternatively, the reassortment of separate viral genome segments, or antigenic shift, which is more common when there are more strains in circulation, can also produce new serotypes. When either of these occur, memory T cells no longer recognize the virus, so people are not immune to the dominant circulating strain. For both influenza and norovirus, epidemics temporarily induce herd immunity until a new dominant strain emerges, causing successive waves of epidemics. As this evolution poses a challenge to herd immunity, broadly neutralizing antibodies and “universal“ vaccines that can provide protection beyond a specific serotype are in development.

Eradication of diseases: The last confirmed case of rinderpest occurred in Kenya in 2001, and the disease was officially declared eradicated in 2011. If herd immunity has been established and maintained in a population for a sufficient time, the disease is inevitably eliminated - no more endemic transmissions occur. If elimination is achieved worldwide and the number of cases is permanently reduced to zero, then a disease can be declared 4) ____. Eradication can thus be considered the final effect or end-result of public health initiatives to control the spread of infectious disease. The benefits of eradication include ending all morbidity and mortality caused by the disease, financial savings for individuals, health care providers, and governments, and enabling resources used to control the disease to be used elsewhere. To date, two diseases have been eradicated using herd immunity and vaccination: rinderpest and 5) _____. Eradication efforts that rely on herd immunity are currently underway for poliomyelitis, though civil unrest and distrust of modern medicine have made this difficult. Mandatory vaccination may be beneficial to eradication efforts if not enough people choose to get vaccinated.

Free riding: Herd immunity is vulnerable to the free rider problem. Individuals who lack immunity, particularly those who choose not to 6) _____, free ride off the herd immunity created by those who are immune. As the number of free riders in a population increases, outbreaks of preventable diseases become more common and more severe due to loss of herd immunity. Individuals may choose to free ride for a variety of reasons, including the perceived ineffectiveness of a vaccine, believing that the risks associated with vaccines are greater than those associated with infection, mistrust of vaccines or public health officials, band-wagoning or group-thinking, social norms or peer pressure, and religious beliefs. Certain individuals are more likely to choose not to receive vaccines if vaccination rates are high enough so as to convince a person that he or she may not need to be vaccinated, since a sufficient percentage of others are already immune.

Individuals who are immune to a disease act as a barrier in the spread of disease, slowing or preventing the transmission of disease to others. An individual's immunity can be acquired via a natural infection or through artificial means, such as vaccination. When a critical proportion of the population becomes immune, called the 7) ____ ____ ____ ____ or herd immunity level (HIL), the disease may no longer persist in the population, ceasing to be endemic. The critical value, or threshold, in a given population, is the point where the disease reaches an endemic steady state, which means that the infection level is neither growing nor declining exponentially. This threshold can be calculated from the effective reproduction number 8) _____, which is obtained by taking the product of the basic reproduction number R0, the average number of new infections caused by each case in an entirely susceptible population that is homogeneous, or well-mixed, meaning each individual can come into contact with every other susceptible individual in the population, and S, the proportion of the population who are susceptible to infection, and setting this product to be equal to 1.

When the effective reproduction number Re of a contagious disease is reduced to and sustained below 1 new individual per infection, the number of cases occurring in the population gradually decreases until the disease has been eliminated. If a population is immune to a disease in excess of that disease's HIT, the number of cases reduces at a faster rate, outbreaks are even less likely to happen, and outbreaks that occur are smaller than they would be otherwise. If the effective reproduction number increases to above 1, then the disease is neither in a steady state nor decreasing in incidence, but is actively spreading through the population and infecting a larger number of people than usual.

An assumption in these calculations is that populations are 9) _____, or well-mixed, meaning that every individual comes into contact with every other individual, when in reality populations are better described as social networks as individuals tend to cluster together, remaining in relatively close contact with a limited number of other individuals. In these networks, transmission only occurs between those who are geographically or physically close to one another. The shape and size of a network is likely to alter a disease's 10) _____, making incidence either more or less common.

ANSWERS: 1) vaccination; 2) eradication; 3) herd; 4) eradicated; 5) smallpox; 6) vaccinate; 7) herd immunity threshold (HIT); 8) RE; 9) homogeneous; 10) HIT

Contact Target Health

Reach out today and let us know how we can help you!
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form